-
用于多時(shí)鐘域 SoC 和 FPGA 的同步器技術(shù)
通常,傳統(tǒng)的雙觸發(fā)器同步器用于同步單比特電平信號(hào)。如圖1和圖2所示,觸發(fā)器A和B1工作在異步時(shí)鐘域。CLK_B 時(shí)鐘域中的觸發(fā)器 B1 對(duì)輸入 B1-d 進(jìn)行采樣時(shí),輸出 B1-q 有可能進(jìn)入亞穩(wěn)態(tài)。但在 CLK_B 時(shí)鐘的一個(gè)時(shí)鐘周期期間,輸出 B1-q 可能穩(wěn)定到某個(gè)穩(wěn)定值。
2023-05-23
-
多電壓SoC電源設(shè)計(jì)技術(shù)
最小化功耗是促進(jìn)IC設(shè)計(jì)現(xiàn)代發(fā)展的主要因素,特別是在消費(fèi)電子領(lǐng)域。設(shè)備的加熱,打開(kāi)/關(guān)閉手持設(shè)備功能所需的時(shí)間,電池壽命等仍在改革中。因此,采用芯片設(shè)計(jì)的最佳實(shí)踐來(lái)幫助降低SoC(片上系統(tǒng))和其他IC(集成電路)的功耗變得非常重要。
2023-05-06
-
如何快速利用藍(lán)牙 AoA 和 AoD 進(jìn)行室內(nèi)物流追蹤
藍(lán)牙 AoA 和 AoD 可針對(duì)工業(yè) 4.0 實(shí)施準(zhǔn)確和經(jīng)濟(jì)的 RTLS。對(duì)于那些可以從 SoC 和包含軟件的模塊中進(jìn)行選擇的設(shè)計(jì)者來(lái)說(shuō),需要快速實(shí)施部署藍(lán)牙 AoA 和 AoD 需要的復(fù)雜軟件。這些 SoC 和模塊針對(duì)電池供電型定位標(biāo)簽進(jìn)行了低功耗優(yōu)化,且用于在惡劣的工業(yè)環(huán)境。
2023-04-14
-
什么是混合信號(hào) IC 設(shè)計(jì)?
在之前的文章中,我們討論了需要具有高輸入阻抗的放大器才能成功地從壓電傳感元件中提取加速度信息。對(duì)于一些壓電加速度計(jì),放大器內(nèi)置在傳感器外殼中?,F(xiàn)代 IC 通常由來(lái)自各個(gè)領(lǐng)域的元素組成。還有各種片上系統(tǒng) (SoC) 和系統(tǒng)級(jí)封裝 (SiP) 技術(shù),包括單個(gè) IC 上的每個(gè) IC 設(shè)計(jì)域,或包含各種半導(dǎo)體工藝和子 IC 的封裝。
2023-04-13
-
PSoC 微控制器和 LVDT 測(cè)量位置
將LVDT(線性可變差動(dòng)變壓器)連接到微控制器可能具有挑戰(zhàn)性,因?yàn)長(zhǎng)VDT需要交流輸入激勵(lì)和交流輸出測(cè)量來(lái)確定其可移動(dòng)磁芯的位置(參考文獻(xiàn) 1 ).大多數(shù)微控制器缺乏專用的交流信號(hào)生成和處理能力,因此需要外部電路來(lái)生成無(wú)諧波、幅度和頻率穩(wěn)定的正弦波信號(hào)。將LVDT的輸出信號(hào)的幅度和相位轉(zhuǎn)換為與微控制器內(nèi)部ADC兼容的形式通常需要額外的外部電路。
2023-03-31
-
通過(guò)避免超速和欠速測(cè)試來(lái)限度地減少良率影響
在用于汽車 SoC 的納米技術(shù)中,硅上的大多數(shù)缺陷都是由于時(shí)序問(wèn)題造成的。因此,汽車設(shè)計(jì)中的全速覆蓋要求非常嚴(yán)格。為了滿足這些要求,工程師們付出了很多努力來(lái)獲得更高的實(shí)速覆蓋率。主要挑戰(zhàn)是以盡可能低的成本以高產(chǎn)量獲得所需質(zhì)量的硅。在本文中,我們討論了與實(shí)時(shí)測(cè)試中的過(guò)度測(cè)試和測(cè)試不足相關(guān)的問(wèn)題,這些問(wèn)題可能會(huì)導(dǎo)致良率問(wèn)題。我們將提供一些有助于克服這些問(wèn)題的建議。
2023-03-23
-
BQ769x2溫度采樣配置及其溫度模型系數(shù)計(jì)算
BQ769x2是TI新一代的多串?dāng)?shù)模擬前端 (Analog Front End, AFE) 芯片。因?yàn)槠渚哂胁蓸泳雀?,集成高邊?qū)動(dòng),功耗小,保護(hù)功能豐富,支持亂序上電,最高支持16S電池,均衡能力強(qiáng)等諸多優(yōu)點(diǎn)而被廣泛應(yīng)用在電動(dòng)兩輪車,電動(dòng)工具,儲(chǔ)能等多種應(yīng)用的BMS方案中。溫度對(duì)于鋰電池的容量,壽命,電量 (State Of Charge, SOC) 計(jì)算以及安全等都有著重要影響,因此對(duì)AFE的溫度采樣通道數(shù)的需求越來(lái)越高,BQ769x2提供了9路溫度采樣以及1路內(nèi)部溫度采樣,豐富的溫度采樣資源極大滿足了用戶對(duì)于溫度監(jiān)控的需求。因BQ769x2內(nèi)置不同溫度模型,支持應(yīng)用不同類型的熱敏電阻,為方便用戶理解和使用,本文將簡(jiǎn)要介紹BQ769x2的溫度采樣功能及其使用配置,以及針對(duì)不同型號(hào)熱敏電阻,使用TI提供的熱敏電阻溫度優(yōu)化器計(jì)算熱敏電阻系數(shù)的使用說(shuō)明。
2023-01-31
-
控制電源啟動(dòng)及關(guān)斷時(shí)序
微處理器、FPGA、DSP、模數(shù)轉(zhuǎn)換器 (ADC) 和片上系統(tǒng) (SoC) 器件一般需要多個(gè)電壓軌才能運(yùn)行。為防止出現(xiàn)鎖定、總線爭(zhēng)用問(wèn)題和高涌流,設(shè)計(jì)人員需要按特定順序啟動(dòng)和關(guān)斷這些電源軌。此過(guò)程稱為電源時(shí)序控制或電源定序,目前有許多解決方案可以有效實(shí)現(xiàn)定序。
2023-01-31
-
汽車SoC電源架構(gòu)設(shè)計(jì)
隨著高級(jí)駕駛輔助系統(tǒng) (ADAS) 和信息娛樂(lè)系統(tǒng)的片上系統(tǒng) (SoC) 計(jì)算能力不斷提高,這對(duì)功率提出了更高的需求。一個(gè) SoC 可能需要 10 多種不同的電源軌,電流范圍也從數(shù)百安(A) 到幾毫安。為這些應(yīng)用設(shè)計(jì)最佳電源架構(gòu)絕非易事。本文將討論如何為汽車 SoC 設(shè)計(jì)最佳電源架構(gòu),尤其是預(yù)調(diào)節(jié)器的設(shè)計(jì)。
2022-12-23
-
用于信號(hào)和數(shù)據(jù)處理電路的DC-DC轉(zhuǎn)換器解決方案
數(shù)據(jù)處理 IC(如現(xiàn)場(chǎng)可編程門(mén)陣列 (FPGA)、片上系統(tǒng) (SoC) 和微處理器)在電信、網(wǎng)絡(luò)、工業(yè)、汽車、航空電子和國(guó)防系統(tǒng)中的應(yīng)用范圍不斷擴(kuò)大。這些系統(tǒng)的一個(gè)共同點(diǎn)是不斷提高處理能力,從而導(dǎo)致原始功率需求的相應(yīng)增加。設(shè)計(jì)人員非常了解高功率處理器的熱管理問(wèn)題,但可能不會(huì)考慮電源的熱管理問(wèn)題。
2022-12-21
-
異構(gòu)集成 (HI) 與系統(tǒng)級(jí)芯片 (SoC) 有何區(qū)別?
異構(gòu)集成 (Heterogeneous integration,HI) 和系統(tǒng)級(jí)芯片 (System on Chip,SoC) 是設(shè)計(jì)和構(gòu)建硅芯片的兩種方式。異構(gòu)集成的目的是使用先進(jìn)封裝技術(shù),通過(guò)模塊化方法來(lái)應(yīng)對(duì) SoC 設(shè)計(jì)日益增長(zhǎng)的成本和復(fù)雜性。
2022-12-19
-
瑞薩電子將與Fixstars聯(lián)合開(kāi)發(fā)工具套件用于優(yōu)化R-Car SoC AD/ADAS AI軟件
全球半導(dǎo)體解決方案供應(yīng)商瑞薩電子宣布,將與專注于多核CPU/GPU/FPGA加速技術(shù)的全球卓越供應(yīng)商Fixstars(Fixstars Corporation)聯(lián)合開(kāi)發(fā)用以優(yōu)化并快速模擬專為瑞薩R-Car片上系統(tǒng)(SoC)所設(shè)計(jì)的自動(dòng)駕駛(AD)系統(tǒng)及高級(jí)駕駛輔助系統(tǒng)(ADAS)的軟件工具。借助這些工具,在軟件開(kāi)發(fā)的初始階段便可充分利用R-Car的性能優(yōu)勢(shì)來(lái)快速開(kāi)發(fā)具有高精度物體識(shí)別功能的網(wǎng)絡(luò)模型,由此減少開(kāi)發(fā)后返工,進(jìn)一步縮短開(kāi)發(fā)周期。
2022-12-15
- 如何解決在開(kāi)關(guān)模式電源中使用氮化鎵技術(shù)時(shí)面臨的挑戰(zhàn)?
- 不同拓?fù)浣Y(jié)構(gòu)中使用氮化鎵技術(shù)時(shí)面臨的挑戰(zhàn)有何差異?
- 多通道同步驅(qū)動(dòng)技術(shù)中的死區(qū)時(shí)間納米級(jí)調(diào)控是如何具體實(shí)現(xiàn)的?
- 電壓放大器:定義、原理與技術(shù)應(yīng)用全景解析
- 減排新突破!意法半導(dǎo)體新加坡工廠冷卻系統(tǒng)升級(jí),護(hù)航可持續(xù)發(fā)展
- 低排放革命!貿(mào)澤EIT系列聚焦可持續(xù)技術(shù)突破
- 連偶科技攜“中國(guó)IP+AIGC+空間計(jì)算”三大黑科技首秀西部電博會(huì)!
- 儀表放大器如何驅(qū)動(dòng)物聯(lián)網(wǎng)終端智能感知?
- 儀表放大器如何成為精密測(cè)量的幕后英雄?
- 精密信號(hào)鏈技術(shù)解析:從原理到高精度系統(tǒng)設(shè)計(jì)
- 性能與成本的平衡:獨(dú)石電容原廠品牌深度對(duì)比
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall